博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深度优先遍历 和 广度优先遍历
阅读量:5926 次
发布时间:2019-06-19

本文共 2958 字,大约阅读时间需要 9 分钟。

————— 第二天 —————

什么是 深度/广度 优先遍历?

深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种方式。

这两种遍历方式有什么不同呢?我们来举个栗子:

我们来到一个游乐场,游乐场里有11个景点。我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?

第一种是一头扎到底的玩法。我们选择一条支路,尽可能不断地深入,如果遇到死路就往回退,回退过程中如果遇到没探索过的支路,就进入该支路继续深入。

在图中,我们首先选择景点1的这条路,继续深入到景点7、景点8,终于发现走不动了(景点旁边的数字代表探索次序):

于是,我们退回到景点7,然后探索景点10,又走到了死胡同。于是,退回到景点1,探索景点9:

按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、6,终于玩遍了整个游乐场:

像这样先深入探索,走到头再回退寻找其他出路的遍历方式,
就叫做深度优先遍历(DFS)。

除了像深度优先遍历这样一头扎到底的玩法以外,我们还有另一种玩法:首先把起点相邻的几个景点玩遍,然后去玩距离起点稍远一些(隔一层)的景点,然后再去玩距离起点更远一些(隔两层)的景点......

在图中,我们首先探索景点0的相邻景点1、2、3、4:

接着,我们探索与景点0相隔一层的景点7、9、5、6:

最后,我们探索与景点0相隔两层的景点8、10:

像这样一层一层由内而外的遍历方式,
就叫做广度优先遍历(BFS)。

深度/广度优先遍历 的实现

深度优先遍历

首先说说深度优先遍历的实现过程。这里所说的回溯是什么意思呢?回溯顾名思义,就是自后向前,追溯曾经走过的路径。

我们把刚才游乐场的例子抽象成数据结构的图,假如我们依次访问了顶点0、1、7、8,发现无路可走了,这时候我们要从顶点8退回到顶点7。

而后我们探索了顶点10,又无路可走了,这时候我们要从顶点10退回到顶点7,再退回到顶点1。

像这样的自后向前追溯曾经访问过的路径,就叫做回溯。

要想实现回溯,可以利用栈的先入后出特性,也可以采用递归的方式(因为递归本身就是基于方法调用栈来实现)。

下面我们来演示一下具体实现过程。

首先访问顶点0、1、7、8,这四个顶点依次入栈,此时顶点8是栈顶:

从顶点8退回到顶点7,顶点8出栈:
接下来访问顶点10,顶点10入栈:

从顶点10退到顶点7,从顶点7退到顶点1,顶点10和顶点7出栈:

探索顶点9,顶点9入栈:

以此类推,利用这样一个临时栈来实现回溯,最终遍历完所有顶点。

广度优先遍历

接下来该说说广度优先遍历的实现过程了。刚才所说的重放是什么意思呢?似乎听起来和回溯差不多?其实,回溯与重放是完全相反的过程。

仍然以刚才的图为例,按照广度优先遍历的思想,我们首先遍历顶点0,然后遍历了邻近顶点1、2、3、4:

接下来我们要遍历更外围的顶点,可是如何找到这些更外围的顶点呢?我们需要把刚才遍历过的顶点1、2、3、4按顺序重新回顾一遍,从顶点1发现邻近的顶点7、9;从顶点3发现邻近的顶点5、6。

像这样把遍历过的顶点按照之前的遍历顺序重新回顾,就叫做重放。同样的,要实现重放也需要额外的存储空间,可以利用队列的先入先出特性来实现。

下面我们来演示一下具体实现过程。

首先遍历起点顶点0,顶点0入队:

接下来顶点0出队,遍历顶点0的邻近顶点1、2、3、4,并且把它们入队:

然后顶点1出队,遍历顶点1的邻近顶点7、9,并且把它们入队:

然后顶点2出队,没有新的顶点可入队:

以此类推,利用这样一个队列来实现重放,最终遍历完所有顶点。

/** * 图的顶点 */private static class Vertex {    int data;    Vertex(int data) {        this.data = data;    }}/** * 图(邻接表形式) */private static class Graph  {private int size;private Vertex[] vertexes;private LinkedList
adj[]; Graph(int size){this.size = size;//初始化顶点和邻接矩阵vertexes = new Vertex[size];adj = new LinkedList[size];for(int i=0; i
queue) { queue.offer(start); while (!queue.isEmpty()){ int front = queue.poll(); if(visited[front]){ continue; } System.out.println(graph.vertexes[front].data); visited[front] = true; for(int index : graph.adj[front]){ queue.offer(index);; } }}public static void main(String[] args) { Graph graph = new Graph(6); graph.adj[0].add(1); graph.adj[0].add(2); graph.adj[0].add(3); graph.adj[1].add(0); graph.adj[1].add(3); graph.adj[1].add(4); graph.adj[2].add(0); graph.adj[3].add(0); graph.adj[3].add(1); graph.adj[3].add(4); graph.adj[3].add(5); graph.adj[4].add(1); graph.adj[4].add(3); graph.adj[4].add(5); graph.adj[5].add(3); graph.adj[5].add(4); System.out.println("图的深度优先遍历:"); dfs(graph, 0, new boolean[graph.size]); System.out.println("图的广度优先遍历:"); bfs(graph, 0, new boolean[graph.size], new LinkedList
());}复制代码

note:生命太短暂,不要去做一些根本没有人想要的东西。

转载于:https://juejin.im/post/5c9a468c51882531f12dcd7c

你可能感兴趣的文章
NFS 网络系统配置及自动挂载
查看>>
corosync(openais)+drbd+pacemaker实现mysql服务器的高可用性群集
查看>>
centos 6.2 硬盘安装(双系统)
查看>>
RHEL6.2 64位系统Virtualbox虚拟机下安装过程
查看>>
Linux中文件查找——find命令
查看>>
How to Install Apache Kafka on CentOS 7
查看>>
Exchange 2016 将邮箱数据库排除
查看>>
正式学习React(四) 前序篇
查看>>
yum安装mysql
查看>>
如何在fedora 16下配置×××连接
查看>>
linux下cache和buffer的使用情况
查看>>
多余的拼音导致Python的数据类型错误
查看>>
前端开发知识之前端移动端适配总结
查看>>
Matrix
查看>>
Apache Spark源码走读之18 -- 使用Intellij idea调试Spark源码
查看>>
VMware 中如何打开U盘弹出U盘或者移动硬盘的(两种方法)
查看>>
南阳38--布线问题
查看>>
通过jsp请求Servlet来操作HBASE
查看>>
Learn Python 012: for loop
查看>>
安全试验资源
查看>>